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Grid: Resource-Sharing Environment

Users:
1000s from 10s institutions 
Well-established communities

Resources:
Computers, data, instruments, 
storage, applications 
Owned/administered by institutions

Applications: data- and compute-
intensive processing
Approach: common infrastructure
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The Problem 

We have now:
Mature grid deployments running in production mode

We do not have yet:
Quantitative characterization of real workloads.

How many files, how much input data per process, etc.
And thus, benchmarks, workload models, reproducible results

Costs:
Local solutions, often replicating work
“Temporary” solutions that become permanent
Far from optimal solutions
Impossible to compare alternatives on relevant workloads
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Still, Why Should We Care?

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Impossibility results, high costs: Tradeoffs are necessary
Solution: Select tradeoffs based on

User requirements (of course)
Usage patterns

Patterns exist and can be exploited. Examples:  
Zipf distribution for request popularity (web caching) Breslau et al., 
Infocom’99
Network topology:
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This Presentation

…characterizes workloads from DZero from the 
perspective of data management

Data is the main resource shared in many grids
High-energy physics domain
Potentially representative for other domains

…proposes a data abstraction (filecule) relevant to 
multi-file data processing
…identifies a novel pattern (small-world file 
sharing) relevant to data sharing
…shows benefits via experiments
and invites your comments and suggestions.
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The DØ Experiment
High-energy physics data grid
72 institutions, 18 countries, 500+ physicists
Detector Data

1,000,000 Channels
Event rate ~50 Hz
So far, 1.9 PB of data (Update?)

Data Processing 
Signals: physics events
Events about 250 KB, stored in files of ~1GB
Every bit of raw data is accessed for 
processing/filtering
Past year overall: 0.6 PB (Update?)

DØ:
… processes PBs/year
… processes 10s TB/day
… uses 25% – 50% remote computing



DØ Workload Characterization

Joint work with 
Shyamala Doraimani (USF)  and 

Gabriele Garzoglio (FNAL)
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DØ Traces (thanks to Ruth and Gabriele)

Traces from January 2003 to May 2005
234,000 jobs, 561 users, 34 domains, 
1.13 million files accessed
108 input files per job on average
Detailed data access information about 
half of these jobs (113,062)
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Contradicts Traditional Models

File size distribution 
Expected: log-normal. Why 
not?

Deployment decisions
Domain specific
Data transformation

File popularity distribution
Expected: Zipf. Why not? 
(speculations):
Scientific data is uniformly interesting
User community is relatively small
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Time Locality

Stack-depth analysis
Good temporal locality
(to be used in cache 
replacement algorithms)
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Filecules: Intuition
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Filecules: General Characteristics

Filecules in High-Energy Physics: Characteristics and Impact on Resource Management, 
Adriana Iamnitchi, Shyamala Doraimani, Gabriele Garzoglio, HPDC’06
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Filecules: Size

Filecules of different sizes:
Largest filecule:17 TB or 51,841 files
28% mono-file filecules
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Filecules: Popularity
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Consequences for Caching

Use filecule membership for prefetching
When a file is missing from the local cache, prefetch
the entire filecule

Use time locality in cache replacement
Least Recently Used (classic algorithm)

Implemented: 
LRU with files and LRU with filecules
Greedy Request Value: prefetching + job reordering 

Does not exploit temporal locality
Prefetching based on cache content

Our variant of LRU with filecules and job reordering
E. Otoo, et al. Optimal file-bundle caching algorithms for data-grids. In SC ’04
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Comparison: Caching Algorithms (1)
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Comparison: Caching Algorithms (2)
% of cache change is a measure of transfer costs. 



18

Summary Part 1
Revisited traditional workload models

Generalized from file systems, the web, etc.
Some confirmed (temporal locality), some infirmed (file size 
distribution and popularity)

Compared caching algorithms on D0 data:
Temporal locality is relevant
Filecules guide prefetching



Filecules and Small Worlds in Scientific 
Communities: Characteristics and 
Significance

Joint work with 
Matei Ripeanu (UBC) and 

Ian Foster (ANL and UChicago)
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“No 24 in B minor, BWV 869”
“Les Bonbons”

“Yellow Submarine”
“Les Bonbons”

“Yellow Submarine”
“Wood Is a Pleasant 
Thing to Think About”

“Wood Is a Pleasant 
Thing to Think 
About”

New metric: The Data-Sharing Graph Gm
T(V, E):

V is set of users active during interval T
An edge in E connects users that asked for at least m
common files within T
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Small average path length

Large clustering coefficient

The DØ Collaboration

Clustering coeficient: 7days, 50 files
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Small World!

CCoef =
# Existing Edges

# Possible 
Edges

6 months of traces (January – June 2002)
300+ users, 2 million requests for 200K files
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Small-World Graphs
Small path length, large clustering coefficient

Typically compared against random graphs 

Think of:
“It’s a small world!”
“Six degrees of separation”

Milgram’s experiments in the 60s
Guare’s play “Six Degrees of Separation”
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Other Small Worlds
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D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks. Nature, 393:440-442, 1998
R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, R. Modern Physics 74, 47 (2002).
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Web Data-Sharing Graphs
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Data-Sharing Relationships in the Web, Iamnitchi, Ripeanu, and Foster, WWW’03
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DØ Data-Sharing Graphs
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KaZaA Data-Sharing Graphs

7day, 
1file

28 days
1 file
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Small-World File-Sharing Communities, Iamnitchi, Ripeanu, and Foster, Infocom ‘04
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Interest-Aware Information Dissemination in Small-World Communities,
Iamnitchi and Foster, HPDC’05
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Amazon’s Simple Storage Service: 
Cost Evaluation for D0

Work with Mayur Palankar, 
Ayodele Onibokun (USF) and 

Matei Ripeanu (UBC)
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Novel storage ‘utility’: 
Direct access to storage

Self-defined performance targets: 
Scalable, infinite data durability, 99.99% availability, 
fast data access

Pay-as-you go pricing: 
$0.15/month/GB stored and $0.20/GB transferred
Recently updated pricing scheme

Is offloading data storage from an in-house 
mass-storage system to S3 feasible and 
cost-effective for scientists?

Amazon’s Simple Storage Service 
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Two level namespace
Buckets  (think directories)

Unique names
Two goals: data organization and charging

Data objects
Opaque object (max 5GB)
Metadata (attribute-value, up to 4K)

Functionality
Simple put/get functionality
Limited search functionality
Objects are immutable, cannot be renamed 

Data access protocols
SOAP
REST
BitTorrent

Amazon S3 Architecture
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Security
Identities

Assigned by S3 when initial contract is ‘signed’
Authentication 

Public/private key scheme
But private key is generated by Amazon!

Access control 
Access control lists (limited to 100 principals)
ACL attributes

FullControl,  
Read & Write (for buckets only for writes)
ReadACL & WriteACL (for buckets or objects)

Auditing (pseudo)
S3 can provide a log record

S3 Architecture (…cont)  
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Approach
Characterize S3 

Does it live up to its own expectations?
Estimate the performance and cost of a representative 
scientific application (DZero) in this context
Is the functionality provided adequate?

S3 characterization methodology
Black-box approach using PlanetLab nodes to estimate: 

durability, 
availability, 
access performance,
the effect of BitTorrent on cost savings

Isolate local failures
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Durability
Perfect (but based on limited scale experiment)

Availability
Four weeks of traces, about 3000 access requests from 5 
PlanetLab nodes
Retry protocol, exponential back-off, 
‘Cleaned’ data

99.03% availability after original access  
99.55% availability after first retry 
100% availability after second retry

Access performance
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Risks
Traditional risks with distributed storage are still a concern: 

Permanent data loss, 
Temporary data unavailability (DoS), 
Loss of confidentiality
Malicious or erroneous data modifications

New risk: direct monetary loss 
Magnified as there is no built-in solution to limit loss 

Security scheme’s big advantage: it’s simple
… but has limitations

Access control
Hard to use ACLs in large systems – needs at least groups
ACLs limited to 100 principals

No support for fine grained delegation
Implicit trust between users and the service S3

No ‘receipts’
No support for un-repudiabiliy

No tools to limit risk

S3 Evaluation: Security
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Hypothetical scenario: 
S3 used by a scientific community: The DZero
Experiment

375 TB data, 5.2 PB processed

Costs
Scenario 1: All data stored at S3 and processed by DZero

Storage $675,000/year for storage ($.15/GB)
Transfer $462,222/year for transfer ($.20/GB. Now $.13-$.18/GB)

$94,768 per month !
Scenario 2: Reducing transfer costs

Caching: With a 50TB cooperative cache $66,329 per year in 
transfer costs
Using EC2 No transfer costs but about 45K in compute costs.

Scenario 3: Reducing storage costs
Useful characteristic: data gets ‘cold’

Throw away derived data
Archive old data – better with S3 support 

S3 Evaluation: Cost
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Summary

Workload characterization based on a HEP grid 
Quantify scale (data processed, number of 
files)
Contradict traditional models

Patterns can guide resource management
Filecules: caching, data replication 
Small world data sharing: adaptive 
information dissemination, replica placement



Thank you.
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Questions

Storage costs for D0: how do they 
compared with S3 costs?
Would you use a storage utility?
What would you request from a storage 
utility provider:

Usage records: need to be private?
Benefits 

Other traces?
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Other Performance Metrics 
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